logo www.dreddyclinic.com

Home | Up | Introduction | What's Included | Products | Adding Pages | FAQs | Ayurvedic Medicine | Integrated Medicine | Education | Contents | Articles | Links | Products | Search | Feedback | Contact
Ayurvedic - Integrated Medical Clinic - reliable health information ...Balance your health
Omega 3 Fatty Acids
What's Included
Adding Pages
Ayurvedic Medicine
Integrated Medicine
Special Programs
Study Programs
Colon Cleansing
colon cleansing program

One of the most frequent bowel problems that people experience today is constipation. Why is the Colon Cleansing so important? Check it out.



Pricelist for the treatments

application form for the Ayurvedic courses

adobe logo pdfYou will need the free Acrobat Reader from Adobe to view and print some of the documents. 








Web DrEddyClinic.com

Omega 3 Fatty Acids 

Integrated Medicine


Omega-3 fatty acids benefit the heart of healthy people, and those at high risk of — or who have —cardiovascular disease.

Omega-3 Fatty Acids are a dietary supplement found mainly in cold water fish, such as mackerel, herring, halibut, cod, shark and salmon. Lesser amounts of it are found in tuna and shrimp. Another good source of Omega-3 fatty acids can be obtained in flaxseed oil. Arthritis sufferers can experience beneficial results by using a supplement containing omega-3 fatty acids. Due to the effects on the immune response and on cell mediators—such as prostaglandins, cytokines, and leukotrienes--in the body that direct the inflammatory response involved in rheumatoid arthritis, use of supplements containing fish oils or plant oils have been shown to reduce the pain, ,swelling and stiffness of arthritis. Also, arthritis medications can be reduced with its use. Two chemicals contained in omega-3 fatty acids are Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA).

How it Works in Your Body:

  • Protects against coronary heart disease
  • Protects against arteriosclerosis
  • Causes high density-lipoprotein (HDL) cholesterol, which is known to protect against deposits of plaque that can occlude critical blood vessels and causes myocardial infractions (heart attacks), strokes and other major health problems
  • Raises blood cholesterol
  • Possible anti-inflammatory response for arthritis sufferers
  • protect against Strokes
  • improve immune response
  • hinder blood clotting
  • increase risk of anemia in menstruating women
  • reduce reclosure of arteries after angioplasty

Studies suggest that omega-3 fatty acids may be helpful in treating a variety of conditions. The evidence is strongest for heart disease and problems that contribute to heart disease, but the range of possible uses for omega-3 fatty acids include:

  • High Cholesterol
    Those who follow a Mediterranean-style diet tend to have higher HDL ("good") cholesterol levels. Similar to those who follow a Mediterranean diet, Inuit Eskimos, who consume high amounts of omega-3 fatty acids from fatty fish, also tend to have increased HDL cholesterol and decreased triglycerides (fatty material that circulates in the blood). In addition, fish oil supplements containing EPA and DHA have been shown to reduce LDL ("bad") cholesterol and triglycerides. Finally, walnuts (which are rich in ALA) have been shown to lower total cholesterol and triglycerides in people with high cholesterol.
  • High Blood Pressure
    Several studies suggest that diets and/or supplements rich in omega-3 fatty acids lower blood pressure significantly in people with hypertension. Fish high in mercury (such as tuna) should be avoided, however, because they may increase blood pressure.
  • Heart Disease
    One of the best ways to help prevent and treat heart disease is to eat a low-fat diet and to replace foods rich in saturated and trans-fat with those that are rich in monounsaturated and polyunsaturated fats (including omega-3 fatty acids). Evidence suggests that EPA and DHA found in fish oil help reduce risk factors for heart disease including high cholesterol and high blood pressure. There is also strong evidence that these substances can help prevent and treat atherosclerosis by inhibiting the development of plaque and blood clots, each of which tends to clog arteries. Studies of heart attack survivors have found that daily omega-3 fatty acid supplements dramatically reduce the risk of death, subsequent heart attacks, and stroke. Similarly, people who eat an ALA-rich diet are less likely to suffer a fatal heart attack.
  • Stroke
    Strong evidence from population-based studies suggests that omega-3 fatty acid intake (primarily from fish), helps protect against stroke caused by plaque buildup and blood clots in the arteries that lead to the brain. In fact, eating at least two servings of fish per week can reduce the risk of stroke by as much as 50%. However, people who eat more than three grams of omega-3 fatty acids per day (equivalent to 3 servings of fish per day) may be at an increased risk for hemorrhagic stroke, a potentially fatal type of stroke in which an artery in the brain leaks or ruptures.
  • Diabetes
    People with diabetes tend to have high triglyceride and low HDL levels. Omega-3 fatty acids from fish oil can help lower triglycerides and raise HDL, so people with diabetes may benefit from eating foods or taking supplements that contain DHA and EPA. ALA (from flaxseed, for example) may not have the same benefit as DHA and EPA because some people with diabetes lack the ability to efficiently convert ALA to a form of omega-3 fatty acids that the body can use readily.
  • Weight Loss
    Many people who are overweight suffer from poor blood sugar control, diabetes, and high cholesterol. Studies suggest that overweight people who follow a weight loss program including exercise tend to achieve better control over their blood sugar and cholesterol levels when fish rich in omega-3 fatty acids (such as salmon, mackerel, and herring) is a staple in their low fat diet.
  • Arthritis
    Most clinical studies investigating the use of omega-3 fatty acid supplements for inflammatory joint conditions have focused almost entirely on rheumatoid arthritis. Several articles reviewing the research in this area conclude that omega-3 fatty acid supplements reduce tenderness in joints, decrease morning stiffness, and allow for a reduction in the amount of medication needed for people with rheumatoid arthritis.
  • In addition, laboratory studies suggest that diets rich in omega-3 fatty acids (and low in omega-6 fatty acids) may benefit people with other inflammatory disorders, such as osteoarthritis. In fact, several test tube studies of cartilage-containing cells have found that omega-3 fatty acids decrease inflammation and reduce the activity of enzymes that destroy cartilage. Similarly, New Zealand green lipped mussel (Perna canaliculus), another potential source of omega-3 fatty acids, has been shown to reduce joint stiffness and pain, increase grip strength, and enhance walking pace in a small group of people with osteoarthritis. In some participants, symptoms worsened before they improved.
  • Osteoporosis
    Studies suggest that omega-3 fatty acids such as EPA help increase levels of calcium in the body, deposit calcium in the bones, and improve bone strength. In addition, studies also suggest that people who are deficient in certain essential fatty acids (particularly EPA and gamma-linolenic acid [GLA], an omega-6 fatty acid) are more likely to suffer from bone loss than those with normal levels of these fatty acids. In a study of women over 65 with osteoporosis, those given EPA and GLA supplements experienced significantly less bone loss over three years than those who were given a placebo. Many of these women also experienced an increase in bone density.
  • Depression - (Depression)
    People who do not get enough omega-3 fatty acids or do not maintain a healthy balance of omega-3 to omega-6 fatty acids in their diet may be at an increased risk for depression. The omega-3 fatty acids are important components of nerve cell membranes. They help nerve cells communicate with each other, which is an essential step in maintaining good mental health.
  • Levels of omega-3 fatty acids were found to be measurably low and the ratio of omega-6 to omega-3 fatty acids were particularly high in a study of patients hospitalized for depression. In a study of people with depression, those who ate a healthy diet consisting of fatty fish two to three times per week for 5 years experienced a significant reduction in feelings of depression and hostility.
  • Manic/Depression (Bipolar Disorder)
    In a study of 30 people with bipolar disorder, those who were treated with EPA and DHA (in combination with their usual mood stabilizing medications) for four months experienced fewer mood swings and recurrence of either depression or mania than those who received placebo. A similar but larger study is currently underway at the University of California- Los Angeles School of Medicine.
  • Schizophrenia
  • Preliminary evidence suggests that people with schizophrenia experience an improvement in symptoms when given omega-3 fatty acids. However, a recent well-designed study concluded that EPA supplements are no better than placebo in improving symptoms of this condition. The conflicting results suggest that more research is needed before conclusions can be drawn about the benefit of omega-3 fatty acids for schizophrenia. Similar to diabetes, people with schizophrenia may not be able to convert ALA to EPA or DHA efficiently.
  • Attention Deficit/Hyperactivity Disorder (ADHD)
    Children with ADHD may have low levels of certain essential fatty acids (including EPA and DHA) in their bodies. In a study of nearly 100 boys, those with lower levels of omega-3 fatty acids demonstrated more learning and behavioral problems (such as temper tantrums and sleep disturbances) than boys with normal omega-3 fatty acid levels. In animal studies, low levels of omega-3 fatty acids have been shown to lower the concentration of certain brain chemicals (such as dopamine and serotonin) related to attention and motivation. Studies that examine the ability of omega-3 supplements to improve symptoms of ADHD are still needed. At this point in time, eating foods high in omega-3 fatty acids is a reasonable approach for someone with ADHD.
  • Eating Disorders
    Studies suggest that men and women with anorexia nervosa have lower than optimal levels of polyunsaturated fatty acids (including ALA and GLA). To prevent the complications associated with essential fatty acid deficiencies, some experts recommend that treatment programs for anorexia nervosa include PUFA-rich foods such as fish and organ meats (which include omega-6 fatty acids). anorexia nervosa
  • Burns
    Essential fatty acids have been used to reduce inflammation and promote wound healing in burn victims. Animal research indicates that omega-3 fatty acids help promote a healthy balance of proteins in the body -- protein balance is important for recovery after sustaining a burn. Further research is necessary to determine whether omega 3s benefit people in the same way.
  • Skin Disorders
    In one study, 13 people with a particular sensitivity to the sun known as photodermatitis showed significantly less sensitivity to UV rays after taking fish oil supplements. Still, research indicates that topical sunscreens are much better at protecting the skin from damaging effects of the sun than omega-3 fatty acids. In another study of 40 people with psoriasis, those who were treated with medications and EPA supplements did better than those treated with the medications alone. In addition, many clinicians believe that flaxseed (which contains omega-3 fatty acids) is helpful for treating acne.
  • Inflammatory Bowel Disease (IBD)
    When added to medication, such as sulfasalazine (a standard medication for IBD), omega-3 fatty acids may reduce symptoms of Crohn's disease and ulcerative colitis -- the two types of IBD. More studies to investigate this preliminary finding are under way. In animals, it appears that ALA works better at decreasing bowel inflammation than EPA and DHA. Plus, fish oil supplements can cause side effects that are similar to symptoms of IBD (such as flatulence and diarrhea). Time-release preparations may help reduce these unwanted effects.
  • Asthma
    Preliminary research suggests that omega-3 fatty acid supplements (in the form of perilla seed oil, which is rich in ALA) may decrease inflammation and improve lung function in adults with asthma. Omega-6 fatty acids have the opposite effect: they tend to increase inflammation and worsen respiratory function. In a small, well-designed study of 29 children with asthma, those who took fish oil supplements rich in EPA and DHA for 10 months had improvement in their symptoms compared to children who took a placebo pill.
  • Macular Degeneration
    A questionnaire administered to more than 3,000 people over the age of 49 found that those who consumed more fish in their diet were less likely to have macular degeneration (a serious age-related eye condition that can progress to blindness) than those who consumed less fish. Similarly, a study comparing 350 people with macular degeneration to 500 without found that those with a healthy dietary balance of omega-3 and omega-6 fatty acids and higher intake of fish in their diets were less likely to have this particular eye disorder. Another larger study confirms that EPA and DHA from fish, four or more times per week, may reduce the risk of developing macular degeneration. Notably, however, this same study suggests that ALA may actually increase the risk of this eye condition.
  • Menstrual Pain
    In a study of nearly 200 Danish women, those with the highest dietary intake of omega-3 fatty acids had the mildest symptoms during menstruation.
  • Colon Cancer
    Consuming significant amounts of foods rich in omega-3 fatty acids appears to reduce the risk of colorectal cancer. For example, Eskimos, who tend to follow a high fat diet but eat significant amounts of fish rich in omega-3 fatty acids, have a low rate of colorectal cancer. Animal studies and laboratory studies have found that omega-3 fatty acids prevent worsening of colon cancer while omega-6 fatty acids promote the growth of colon tumors. Daily consumption of EPA and DHA also appeared to slow or even reverse the progression of colon cancer in people with early stages of the disease.
  • However, in an animal study of rats with metastatic colon cancer (in other words, cancer that has spread to other parts of the body such as the liver), omega-3 fatty acids actually promoted the growth of cancer cells in the liver. Until more information is available, it is best for people with advanced stages of colorectal cancer to avoid omega-3 fatty acid supplements and diets rich in this substance.
  • Breast Cancer
    Although not all experts agree, women who regularly consume foods rich in omega-3 fatty acids over many years may be less likely to develop breast cancer. In addition, the risk of dying from breast cancer may be significantly less for those who eat large quantities of omega-3 from fish and brown kelp seaweed (common in Japan). This is particularly true among women who substitute fish for meat. The balance between omega-3 and omega-6 fatty acids appears to play an important role in the development and growth of breast cancer. Further research is still needed to understand the effect that omega-3 fatty acids may have on the prevention or treatment of breast cancer. For example, several researchers speculate that omega-3 fatty acids in combination with other nutrients (namely, vitamin C, vitamin E, beta-carotene, selenium, and coenzyme Q10) may prove to be of particular value for preventing and treating breast cancer.
  • Prostate Cancer
    Laboratory and animal studies indicate that omega-3 fatty acids (specifically, DHA and EPA) may inhibit the growth of prostate cancer. Similarly, population based studies of groups of men suggest that a low-fat diet with the addition of omega-3 fatty acids from fish or fish oil help prevent the development of prostate cancer. Like breast cancer, the balance of omega-3 to omega-6 fatty acids appears to be particularly important for reducing the risk of this condition. ALA, however, may not offer the same benefits as EPA and DHA. In fact, one recent study evaluating 67 men with prostate cancer found that they had higher levels of ALA compared to men without prostate cancer. More research in this area is needed.
  • Other
    Although further research is needed, preliminary evidence suggests that omega-3 fatty acids may also prove helpful in protecting against certain infections and treating a variety of conditions including ulcers, migraine headaches, preterm labor, emphysema, psoriasis, glaucoma, Lyme disease, lupus, and panic attacks.

Where it is Found:

  • Mackerel
  • Herring
  • Halibut
  • Cod
  • Shark
  • Salmon
  • Tuna
  • Shrimp
  • Flaxseed oil

How to Use:
Available as:

Don’t take if you:
Are pregnant, there is a possibility you are pregnant or plan to become pregnant in the future.
Are diabetic, due to the high fat content in supplements
Have a blood clotting problem (omega-3 acids may reduce the ability of the blood to clot)
Will undergo surgery

Consult your doctor if you:
Take any herbs or drugs including aspirin, laxatives, cold and cough remedies, antacids, vitamins, minerals, amino acids, supplements, other prescription or nonprescription drugs.

Do no use unless advised by your doctor. There are no proven problems in pregnant women taking small or usual amounts, however the chance of problems do exist.

Do no use unless advised by your doctor. There are no proven problems in breast-fed infants of lactating mothers taking small or usual amounts, however the chance of problems do exist.

Infants and Children:
It is hazardous to treat infants and children under 2 with any supplement.

Keep in a cool and dry location and away from direct light, but do not freeze.
Keep safely away from children.
Do not keep in bathroom medicine cabinet. Heat and dampness may alter the action of the supplement.

Safe dosage:
To date, there has been no “safe” dosage established.

Information on the comparative-toxicity rating cannot be found in standard references.

Side Effects:
Signs and symptoms : What to do?
Large amounts may lead to bleeding problems, diminished immunity, predisposition to some malignancies:
Discontinue use. Call your physician immediately

Supporting Research:

Al-Harbi MM, Islam MW, Al-Shabanah OA, Al-Gharably NM. Effect of acute administration of fish oil (omega-3 marine triglyceride) on gastric ulceration and secretion induced by various ulcerogenic and necrotizing agents in rats. Fed Chem Toxic. 1995;33(7):555-558.

Albert CM, Hennekens CH, O'Donnell CJ, et al. Fish consumption and risk of sudden cardiac death. JAMA. 1998;279(1):23-28.

Ando H, Ryu A, Hashimoto A, Oka M, Ichihashi M. Linoleic acid and alpha-linolenic acid lightens ultraviolet-induced hyperpigmentation of the skin. Arch Dermatol Res. 1998;290(7):375-381.

Andreassen AK, Hartmann A, Offstad J, Geiran O, Kvernebo K, Simonsen S. Hypertension prophylaxis with omega-3 fatty acids in heart transplant recipients. J Am Coll Cardiol. 1997;29:1324-1331.

Angerer P, von Schacky C. n-3 polyunsaturated fatty acids and the cardiovascular system. Curr Opin Lipidol. 2000;11(1):57-63.

Anti M, Armelau F, Marra G, et al. Effects of different doses of fish oil on rectal cell proliferation in patients with sporadic colonic adenomas. Gastroenterology. 1994;107(6):1892-1894.

Appel LJ. Nonpharmacologic therapies that reduce blood pressure: a fresh perspective. Clin Cardiol. 1999;22(Suppl. III):III1-III5.

Arnold LE, Kleykamp D, Votolato N, Gibson RA, Horrocks L. Potential link between dietary intake of fatty acid and behavior: pilot exploration of serum lipids in attention-deficit hyperactivity disorder. J Child Adolesc Psychopharmacol. 1994;4(3):171-182.

Aronson WJ, Glaspy JA, Reddy ST, Reese D, Heber D, Bagga D. Modulation of omega-3/omega-6 polyunsaturated ratios with dietary fish oils in men with prostate cancer. Urology. 2001;58(2):283-288.

Badalamenti S, Salerno F, Lorenzano E, et al. Renal Effects of Dietary Supplementation With Fish Oil in Cyclosporine-Treated Liver Transplant Patients. Hepatol. 1995;2(6):1695-1701.

Baumgaertel A. Alternative and controversial treatments for attention-deficit/hyperactivity disorder. Pediatr Clin of North Am. 1999;46(5):977-992.

Belluzzi A, Boschi S, Brignola C, Munarini A, Cariani C, Miglio F. Polyunsaturated fatty acids and inflammatory bowel disease. Am J Clin Nutr. 2000;71(suppl):339S-342S.

Belluzzi A, Brignolia C, Campieri M, Pera A, Boschi S, Miglioli M. Effect of an enteric-coated fish-oil preparation on relapses in Crohn's disease. New Engl J Med. 1996;334(24):1558-1560.

Boelsma E, Hendriks HF. Roza L. Nutritional skin care: health effects of micronutrients and fatty acids. Am J Clin Nutr. 2001;73(5):853-864.

Bonaa KH, Bjerve KS, Nordoy A. Docosahexaenoic and eicosapentaenoic acids in plasma phospholipids are divergently associated with high density lipoprotein in humans. Arterioscler Thromb. 1992;12(6):675-681.

Broadhurst CL, Cunnane SC, Crawford MA. Rift Valley lake fish and shellfish provided brain-specific nutrition for early Homo. Br J Nutr. 1998;79(1):3-21.

Brown DJ, Dattner AM. Phytotherapeutic approaches to common dermatologic conditions. Arch Dermtol. 1998;134:1401-1404.

Bruinsma KA, Taren DL. Dieting, essential fatty acid intake, and depression. Nutrition Rev. 2000;58(4):98-108.

Burgess J, Stevens L, Zhang W, Peck L. Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. Am J Clin Nutr. 2000; 71(suppl):327S-330S.

Calder PC. n-3 polyunsaturated fatty acids, inflammation and immunity: pouring oil on troubled waters or another fishy tale? Nut Res. 2001;21:309-341.

Caron MF, White CM. Evaluation of the antihyperlipidemic properties of dietary supplements. Pharmacotherapy. 2001;21(4):481-487.

Cellini M, Caramazzu N, Mangiafico P, Possati GL, Caramazza R. Fatty acid use in glaucomatous optic neuropathy treatment. Acta Ophthalmol Scand Suppl. 1998;227:41-42.

Cho E, Hung S, Willet WC, Spiegelman D, Rimm EB, Seddon JM, et al. Prospective study of dietary fat and the risk of age-related macular degeneration. Am J Clin Nutr. 2001;73(2):209-218.

Christensen JH, Skou HA, Fog L, Hansen V, Vesterlund T, Dyerberg J, Toft E, Schmidt EB. Marine n-3 fatty acids, wine intake, and heart rate variability in patients referred for coronary angiography. Circulation. 2001;103:623-625.

Clark WF, Kortas C, Heidenheim AP, Garland J, Spanner E, Parbtani A. Flaxseed in lupus nephritis: a two–year nonplacebo-controlled crossover study. J Am Coll Nutr. 2001;20(2 Suppl):143-148.

Connolly JM, Gilhooly EM, Rose DP. Effects of reduced dietary linoleic acid intake, alone or combined with an algal source of docosahexaenoic acid, on MDA-MD-231 breast cancer cell growth and apoptosis in nude mice. Nutrition Can. 1999;35(1):44-49.

Connor SL, Connor WE. Are fish oils beneficial in the prevention and treatment of coronary artery disease? Am J Clin Nutr. 1997;66(suppl):1020S-1031S.

Curtis CL, Hughes CE, Flannery CR, Little CB, Harwood JL, Caterson B. N-3 fatty acids specifically modulate catabolic factors involved in articular cartilage degradation. J Biol Chem. 2000;275(2):721-724.

Danao-Camara TC, Shintani TT. The dietary treatment of inflammatory arthritis: case reports and review of the literature. Hawaii Med J. 1999;58(5):126-131.

Danno K, Sugie N. Combination therapy with low-dose etretinate and eicosapentaenoic acid for psoriasis vulgaris. J Dermatol. 1998;25:703-705.

Davidson MH, Maki KC, Kalkowski J, Schaefer EJ, Torri SA, Drennan KB. Effects of docosahexeaenoic acid on serum lipoproteins in patients with combined hyperlipidemia. A randomized, double-blind, placebo-controlled trial. J Am Coll Nutr. 1997;16:3:236-243.

de Deckere EAM. Possible beneficial effect of fish and fish n-3 polyunsaturated fatty acids in breast and colorectal cancer. Eur J Cancer Prev. 1999;8:213-221.

deDeckere EAM, Korver O, Verschuren PM, Katan MB. Health aspects of fish and n-3 polyunsaturated fatty acids from plant and marine origin. Eur J Clin Nutr. 1998;52(10):749-753.

de Logeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation. 1999;99(6):779-785.

De-Souza DA, Greene LJ. Pharmacological nutrition after burn injury. J Nutr. 1998;128:797-803.

Deutch B. Menstrual pain in Danish women correlated with low n-3 polyunsaturated fatty acid intake. Eur J Clin Nutr. 1995;49(7):508-516.

Dewailly E, Blanchet C, Lemieux S, et al. n-3 fatty acids and cardiovascular disease risk factors among the Inuit of Nunavik. Am J Clin Nutr. 2001;74(4):464-473.

Dichi I, Frenhane P, Dichi JB, Correa CR, Angeleli AY, Bicudo MH, et al. Comparison of omega-3 fatty acids and sulfasalazine in ulcerative colitis. Nutrition. 2000;16:87-90.

Edwards R, Peet M, Shay J, Horrobin D. Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients. J Affect Disord. 1998;48(2-3):149-155.

Fatty fish consumption and ischemic heart disease mortality in older adults: The cardiovascular heart study. Presented at the American Heart Association's 41st annual conference on cardiovascular disease epidemiology and prevention. AHA. 2001.

Fenton WS, Dicerson F, Boronow J, et al. A placebo controlled trial of omega-3 fatty acid (ethyl eicosapentaenoic acid) supplementation for residual symptoms and cognitive impairment in schizophrenia. Am J Psychiatry. 2001;158(12):2071-2074.

Foulon T, Richard MJ, Payen N, et al. Effects of fish oil fatty acids on plasma lipids and lipoproteins and oxidant-antioxidant imbalance in healthy subjects. Scan J Clin Lab Invest. 1999;59(4):239-248.

Freeman VL, Meydani M, Yong S, Pyle J, Flanigan RC, Waters WB, Wojcik EM. Prostatic levels of fatty acids and the histopathology of localized prostate cancer. J Urol. 2000;164(6):2168-2172.

Friedberg CE, Janssen MJ, Heine RJ, Grobbee DE. Fish oil and glycemic control in diabetes: a meta-analysis. Diabetes Care. 1998;21:494-500.

Frieri G, Pimpo MT, Palombieri A, Melideo D, Marcheggiano A, Caprilli R, et al. Polyunsaturated fatty acid dietary supplementation: an adjuvant approach to treatment of Helicobacter pylori infection. Nut Res. 2000;20(7):907-916.

Gamez-Mez N, Higuera-Ciapara I, Calderon de la Barca AM, Vazquez-Moreno L, Noriega-Rodriquez J, Angulo-Guerrero O. Seasonal variation in the fatty acid composition and quality of sardine oil from Sardinops sagax caeruleus of the Gulf of California. Lipids. 1999;34)6_:639-642.

Geerling BJ, Badart-Smook A, van Deursen C, et al. Nutritional supplementation with N-3 fatty acids and antioxidants in patients iwth Crohn's disease in remission: effects on antioxidant status and fatty acid profile. Inflamm Bowel Dis. 2000;6(2):77-84.

Geerling BJ, Houwelingen AC, Badart-Smook A, Stockbrügger RW, Brummer R-JM. Fat intake and fatty acid profile in plasma phospholipids and adipose tissue in patients with Crohn's disease, compared with controls. Am J Gastroenterol. 1999;94(2):410-417.

Gibson SL, Gibson RG. The treatment of arthritis with a lipid extract of Perna canaliculus: a randomized trial. Complement Ther Med. 1998;6:122-126.

Griffini P, Fehres O, Klieverik L, et al. Dietary omega-3 polyunsaturated fatty acids promote colon carcinoma metastasis in rat liver. Can Res. 1998;58(15):3312-3319.

GISSI-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet. 1999;354:447-455

Halpern G-M. Anti-inflammatory effects of a stabilized lipid extract of Perna canaliculus (Lyprinol). Allerg Immunol (Paris). 2000;32(7):272-278.

Harper CR, Jacobson TA. The fats of life: the role of omega-3 fatty acids in the prevention of coronary heart disease. Arch Intern Med. 2001;161(18):2185-2192.

Harris WS. N-3 fatty acids and serum lipoproteins: human studies. Am J Clin Nutr. 1997;65(5):1645S (10).

Hayashi N, Tsuguhiko T, Yamamori H, et al. Effect of intravenous w-6 and w-3 fat emulsions on nitrogen retention and protein kinetics in burned rats. Nutrition. 1999;15(2):135-139.

Hibbeln JR. Fish consumption and major depression. Lancet. 1998;351(9110):1213.

Hibbeln JR, Salem N, Jr. Dietary polyunsaturated fatty acids and depression: when cholesterol does not satisfy. Am J Clin Nut. 1995;62(1):1-9.

Holman RT, Adams CE, Nelson RA, et al. Patients with anorexia nervosa demonstrate deficiencies of selected essential fatty acids, compensatory changes in nonessential fatty acids and decreased fluidity of plasma lipids. J Nutr. 1995;125:901-907.

Homan van der Heide JJ, Bilo HJ, Tegzess AM, Donker AJ. The effects of dietary supplementation with fish oil on renal function in cyclosporine-treated renal transplant recipients. Transplantation. 1990;49:523-527.

Horrobin DF. The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr Res. 1998;30(3):193-208.

Horrobin DF, Bennett CN. Depression and bipolar disorder: relationships to impaired fatty acid and phospholipid metabolism and to diabetes, cardiovascular disease, immunological abnormalities, cancer, ageing and osteoporosis. Prostaglandins Leukot Essent Fatty Acids. 1999;60(4):217-234.

Horrocks LA, Yeo YK. Health benefits of docosahexaenoic acid. Pharmacol Res. 1999;40(3):211-225.

Howe PR. Can we recommend fish oil for hypertension? Clin Exp Pharmacol Physiol. 1995;22(3):199-203.

Hrboticky N, Zimmer B, Weber PC. Alpha-Linolenic acid reduces the lovastatin-induced rise in arachidonic acid and elevates cellular and lipoprotein eicosapentaenoic and docosahexaenoic acid levels in Hep G2 cells. J Nutr Biochem. 1996;7:465-471.

Hu FB, Stampfer MJ, Manson JE et al. Dietary intake of alpha-linolenic acid and risk of fatal ischemic heart disease among women. Am J Clin Nutr. 1999;69:890-897.

Iso H, Rexrode KM, Stampfer MJ, Manson JE, Colditz GA, Speizer FE et al. Intake of fish and omega-3 fatty acids and risk of stroke in women. JAMA. 2001;285(3):304-312.

Jeschke MG, Herndon DN, Ebener C, Barrow RE, Jauch KW. Nutritional intervention high in vitamins, protein, amino acids, and omega-3 fatty acids improves protein metabolism during the hypermetabolic state after thermal injury. Arch Surg. 2001;136:1301-1306.

Juhl A, Marniemi J, Huupponen R, Virtanen A, Rastas M, Ronnemaa T. Effects of diet and simvistatin on serum lipids, insulin, and antioxidants in hypercholesterolemic men; a randomized controlled trial. JAMA. 2002;2887(5):598-605.

Klurfeld DM, Bull AW. Fatty acids and colon cancer in experimental models. Am J Clin Nut. 1997;66(6 Suppl):1530S-1538S.

Kooijmans-Coutinho MF, Rischen-Vos J, Hermans J, Arndt JW, van der Woude FJ. Dietary fish oil in renal transplant recipients treated with cyclosporin-A: no beneficial effects shown. J Am Soc Nephrol. 1996;7(3):513-518.

Krauss RM, Eckel RH, Howard B, et al. AHA Scientific Statement: AHA Dietary guidelines Revision 2000: A statement for healthcare professionals from the nutrition committee of the American Heart Association. Circulation. 2000;102(18):2284-2299.

Kremer JM. N-3 fatty acid supplements in rheumatoid arthritis. Am J Clin Nutr. 2000;(suppl 1):349S-351S.

Kris-Etherton P, Eckel RH, Howard BV, St. Jeor S, Bazzare TL. AHA Science Advisory: Lyon Diet Heart Study. Benefits of a Mediterranean-style, National Cholesterol Education Program/American Heart Association Step I Dietary Pattern on Cardiovascular Disease. Circulation. 2001;103:1823.

Kris-Etherton PM, Taylor DS, Yu-Poth S, et al. Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr. 2000;71(1 Suppl):179S-188S.

Kruger MC, Coetzer H, de Winter R, Gericke G, van Papendorp DH. Calcium, gamma-linolenic acid and eicosapentaenoic acid supplementation in senile osteoporosis. Aging Clin Exp Res. 1998;10:385-394.

Kruger MC, Horrobin DF. Calcium metabolism, osteoporosis and essential fatty acids: a review. Prog Lipid Res. 1997;36:131-151.

Kulkarni PS, Srinivasan BD. Cyclooxygenase and lipoxygenase pathways in anterior uvea and conjunctiva. Prog Clin Biol Res. 1989;312:39-52.

Kuroki F, Iida M, Matsumoto T, Aoyagi K, Kanamoto K, Fujishima M. Serum n3 polyunsaturated fatty acids are depleted in Crohn's disease. Dig Dis Sci. 1997;42(6):1137-1141.

Laugharne JD, Mellor JE, Peet M. Fatty acids and schizophrenia. Lipids. 1996;31(Suppl):S-163-165.

Levy E, Rizwan Y, Thibault L, et al. Altered lipid profile, lipoprotein composition, and oxidant and antioxidant status in pediatric Crohn disease. Am J Clin Nutr. 2000;71:807-815.

Lockwood K, Moesgaard S, Hanioka T, Folkers K. Apparent partial remission of breast cancer in 'high risk' patients supplemented with nutritional antioxidants, essential fatty acids, and coenzyme Q10. Mol Aspects Med. 1994;15Suppl:s231-s240.

Lopez-Miranda J, Gomez P, Castro P, et al. Mediterranean diet improves low density lipoproteins' susceptibility to oxidative modifications. Med Clin (Barc) [in Spanish]. 2000;115(10):361-365.

Lorenz-Meyer H, Bauer P, Nicolay C, Schulz B, Purrmann J, Fleig WE, et al. Omega-3 fatty acids and low carbohydrate diet for maintenance of remission in Crohn's disease. A randomized controlled multicenter trial. Study Group Members (German Crohn's Disease Study Group). Scan J Gastroenterol. 1996;31(8):778-785.

Mabile L, Piolot A, Boulet L, Fortin LJ, Doyle N, Rodriquez C, et al. Moderate intake of omega-3 fatty acids is associated with stable erythrocyte resistance to oxidative stress in hypertriglyceridemic subjects. Am J Clin Nutr. 2001;7494):449-456.

Mayser P, Mrowietz U, Arenberger P, Bartak P, Buchvald J, Christophers E, et al. Omega-3 fatty acid-based lipid infusion in patients with chronic plaque psoriasis: results of a double-blind, randomized, placebo controlled, multicenter trial. J Am Acad Dermatol. 1998;38(4):539-547.

Meydani M. Omega-3 fatty acids alter soluble markers of endothelial function in coronary heart disease patients. Nutr Rev. 2000;58(2 pt 1):56-59.

Mitchell EA, Aman MG, Turbott SH, Manku M. Clinical characteristics and serum essential fatty acid levels in hyperactive children. Clin Pediatr (Phila). 1987;26:406-411.

Montori V, Farmer A, Wollan PC, Dinneen SF. Fish oil supplementation in type 2 diabetes: a quantitative systematic review. Diabetes Care. 2000;23:1407-1415.

Mori TA, Bao, DQ, Burke V, et al. Dietary fish as a major component of a weight-loss diet: effect on serum lipids, glucose, and insulin metabolism in overweight hypertensive subjects. Am J Clin Nutr. 1999;70:817-825.

Morris MC, Sacks F, Rosner B. Does fish oil lower blood pressure? A meta-analysis of controlled trials. Circulation. 1993;88:523-533.

Nagakura T, Matsuda S, Shichijyo K, Sugimoto H, Hata K. Dietary supplementation with fish oil rich in omega-3 polyunsaturated fatty acids in children with bronchial asthma. Eur Resp J. 2000;16(5):861-865.

Nestel PJ, Pomeroy SE, Sasahara T, et al. Arterial compliance in obese subjects is improved with dietary plant n-3 fatty acid from flaxseed oil despite increased LDL oxidizability. Arterioscler Thromb Vasc Biol. July 1997;17(6):1163-1170.

Newcomer LM, King IB, Wicklund KG, Stanford JL. The association of fatty acids with prostate cancer risk. Prostate. 2001;47(4):262-268.

Okamoto M, Misunobu F, Ashida K, et al. Effects of dietary supplementation with n-3 fatty acids compared with n-6 fatty acids on bronchial asthma. Int Med. 2000;39(2):107-111.

Okamoto M, Misunobu F, Ashida K, et al. Effects of perilla seed oil supplementation on leukotriene generation by leucocytes in patients with asthma associated with lipometabolism. Int Arch Allergy Immunol. 2000;122(2):137-142.

Olsen SF, Secher NJ. Low consumption of seafood in early pregnancy as a risk factor for preterm delivery: prospective cohort study. BMJ. 2002;324(7335): 447-451.

Prisco D, Paniccia R, Bandinelli B, et al. Effect of medium term supplementation with a moderate dose of n-3 polyunsaturated fatty acid on blood pressure in mild hypertensive patients. Thromb Res. 1998;91:105-112.

Paul KP, Leichsenring M, Pfisterer M, Mayatepek E, Wagner D, Domann M, et al. Influence of n-6 and n-3 polyunsaturated fatty acids on the resistance to experimental tuberculosis. Metabolism. 1997;46(6):619-624.

Peet M, Laugharne JD, Mellor J, et al. Essential fatty acid deficiency in erythrocyte membranes from chronic schizophrenic patients, and the clinical effects of dietary supplementation. Prostaglandins Leukot Essent Fatty Acids. 1996;55(1-2):71-75.

Puri B, Richardson AJ, Horrobin DF, et al. Eicosapentaenoic acid treatment in schizophrenia associated with symptom remission, normalisation of blood fatty acids, reduced neuronal membrane phospholipid turnover and structural brain changes. Int J Clin Pract. 2000;54(1):57-63.

Rhodes LE, Durham BH, Fraser WD, Friedmann PS. Dietary fish oil reduces basal and ultraviolet B-generated PGE2 levels in skin and increases the threshold to provocation of polymorphic light eruption. J Invest Dermatol. 1995;105(4):532-535.

Rhodes LE, White SI. Dietary fish oil as a photoprotective agent in hydroa vacciniforme. Br J Dermatol. 1998;138(1):173-178.

Richardson AJ, Puri BK. The potential role of fatty acids in attention-deficit/hyperactivity disorder. Prostaglandins Leukot Essent Fatty Acids. 2000;63(1/2):79-87.

Rose DP, Connolly JM, Coleman M. Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice. Clin Cancer Res. 1996;2:1751-1756.

Sakaguchi K, Morita I, Murota S. Eicosapentaenoic acid inhibits bone loss due to ovariectomy in rats. Prostaglandins Leukot Essent Fatty Acids. 1994;50:81-84.

Sanders TA, Hinds A. The influence of a fish oil high in docosahexaenoic acid on plasma lipoprotein and vitamin E concentrations and haemostatic function in healthy male volunteers. Br J Nutr. 1992;68(1):163-173.

Seddon JM, Rosner B, Sperduto RD, Yannuzzi L, Haller JA, Blair NP, Willett W. Dietary fat and risk for advanced age-related macular degeneration. Arch Opthalmol. 2001;119(8):1191-1199.

Shils ME, Olson JA, Shike M, Ross AC. Modern Nutrition in Health and Disease. 9th ed. Baltimore, Md: Williams & Wilkins; 1999:90-92, 1377-1378.

Shoda R, Matsueda K, Yamato S, Umeda N. Therapeutic efficacy of N-3 polyunsaturated fatty acid in experimental Crohn's disease. J Gastroenterol. 1995;30(Suppl 8):98-101.

Simopoulos AP. Essential fatty acids in health and chronic disease. Am J Clin Nutr. 1999;70(30 Suppl):560S-569S.

Simopoulos AP. Human requirement for N-3 polyunsaturated fatty acids. Poult Sci. 2000;79(7):961-970.

Smith W, Mitchell P, Leeder SR. Dietary fat and fish intake and age-related maculopathy. Arch Opthamol. 2000;118(3):401-404.

Soyland E, Funk J, Rajka G, Sandberg M, Thune P, Ruistad L, et al. Effect of dietary supplementation with very-long chain n-3 fatty acids in patients with psoriasis. N Engl J Med. 1993;328(25):1812-1816.

Stampfer MJ, Hu FB, Manson JE, Rimm EB, Willett WC. Primary prevention of coronary heart disease in women through diet and lifestyle. N Engl J Med. 2000;343(1):16-22

Stark KD, Park EJ, Maines VA, et al. Effect of fish-oil concentrate on serum lipids in postmenopausal women receiving and not receiving hormone replacement therapy in a placebo-controlled, double blind trial. Am J Clin Nutr. 2000;72:389-394.

Stevens LJ, Zentall SS, Abate ML, Kuczek T, Burgess JR. Omega-3 fatty acids in boys with behavior, learning and health problems. Physiol Behav. 1996;59(4/5):915-920.

Stevens LJ, Zentall SS, Deck JL, et al. Essential fatty acid metabolism in boys with attention-deficit hyperactivity disorder. Am J Clin Nutr. 1995;62:761-768.

Stoll AL, Severus WE, Freeman MP, et al. Omega 3 fatty acids in bipolar disorder: a preliminary double-blind placebo-controlled trial. Arch Gen Psychiatry. 1999:56(5):407-412.

Stoll BA. Breast cancer and the Western diet: role of fatty acids and antioxidant vitamins. Eur J Cancer. 1998;34(12):1852-1856.

Terry P, Lichtenstein P, Feychting M, Ahlbom A, Wolk A. Fatty fish consumption and risk of prostate cancer. Lancet. 2001;357(9270):1764-1766.

Tsai W-S, Nagawa H, Kaizaki S, Tsuruo T, Muto T. Inhibitory effects of n-3 polyunsaturated fatty acids on sigmoid colon cancer transformants. J Gastroenterol. 1998;33:206-212.

Tsujikawa T, Satoh J, Uda K, Ihara T, Okamoto T, Araki Y, et al. Clinical importance of n-3 fatty acid-rich diet and nutritional education for the maintenance of remission in Crohn's disease. J Gastroenterol. 2000;35(2):99-104.

Ventura HO, Milani RV, Lavie CJ, Smart FW, Stapleton DD, Toups TS, Price HL. Cyclosporine induced hypertension. Efficacy of omega-3 fatty acids in patients after cardiac transplantation. Circulation. 1993;88(5 Pt 2):II281-II285.

von Schacky C, Angere P, Kothny W, Theisen K, Mudra H. The effect of dietary omega-3 fatty acids on coronary atherosclerosis: a randomized, double-blind, placebo-controlled trial. Ann Intern Med. 1999;130:554-562.

Voskuil DW, Feskens EJM, Katan MB, Kromhout D. Intake and sources of alpha-linolenic acid in Dutch elderly men. Euro J Clin Nutr. 1996;50(12):784-787.

Wagner W, Nootbaar-Wagner U. Prophylactic treatment of migraine with gamma-linolenic and alpha-linolenic acids. Cephalalgia. 1997;17(2):127-130.

Werbach MR. Nutritional Influences on Illness. 2nd ed. Tarzana, Calif: Third Line Press; 1993:13-22, 655-671.

Yehuda S, Rabinovitz S, Carasso RL, Mostofsky DI. Fatty acids and brain peptides. Peptides. 1998;19(2):407-419.

Yosefy C, Viskoper JR, Laszt A, Priluk R, Guita E, Varon D, et al. The effect of fish oil on hypertension, plasma lipids and hemostasis in hypertensive, obese, dyslipidemic patients with and without diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids. 1999;61(2):83-87.

Zambón D, Sabate J, Munoz S, et al. Substituting walnuts for monounsaturated fat improves the serum lipid profile of hypercholesterolemic men and women. Ann Intern Med. 2000;132:538-546.

Zimmerman R, Radhakrishnan J, Valeri A, Appel G. Advances in the treatment of lupus nephritis. Ann Rev Med. 2001;52:63-78.

Acidophilus (Lactobacillus)
Blue-Green Algae (Spirulina, Spirulina Maxima) Spirulina Platensis
Calcium (Calcium citrate) Calcium Gluconate)
Chondroitin Sulfate
Coenzyme Q (CoQ, Ubiquinoe, Coenzyme Q10)
Conjugated Linoleic Acid (CLA)
Dehydroepiandrosterone (DHEA)
Desiccated Liver (Dessicated Liver)
Gamma-Linolenic Acid (GLA) Evening Primrose Oil)
Ginkgo Biloba (Ginkgoaceae)
Ginseng (Asian, American, Korean, Chinese, Panax, Quinquefolius)
Inositol (Myoinositol)
Iron (Ferrous Sulfate)

Jojoba (Goatnut, Simmondsia Chinensis)
Lecithin (Phosphatidylcholine)
Omega 3 Fatty Acids
Para-Aminobenzoic Acid (PABA)
Potassium (Potassium Chloride, Trikates)
Royal Jelly
Vitamin B-1 (Thiamine)
Vitamin B-2 (Riboflavin)
Vitamin B-3 (Niacin)
Vitamin B-5 (Pantothenic Acid)

Vitamin B-6 (Pyridoxine, pyridoxal phosphate)
Vitamin B-9 (Folic Acid) Folate, Pteroyiglutamic Acid) Folacin)
Vitamin B-12 (Cyanocobalamin)
Vitamin C (Ascorbic Acid)
Vitamin D (cholecalciferol, sunshine vitamin)
Vitamin E (alpha-tocopherol)
Vitamin H (Biotin)
Vitamin K (Phytonadione)
Vitamin P (Bioflavonoids, Phytochemicals)

New Findings About Omega-3 Fatty Acids and Depression

Importance of Omega Three Fats in Health and Disease

By Dr. William Connor

Interest in omega-3 fatty acids began some 30 years ago and there are now several thousand papers in the scientific literature supporting their benefits.

There is little doubt that omega-3 fatty acids are important in human nutrition. They are significant structural components of the cell membranes of tissues throughout the body and are especially rich in the retina, brain, and sperm, in which docosahexaenoic acid (DHA) constitutes 36.4% of total fatty acids

Membrane fluidity is essential for proper functioning of these tissues. In the retina, where omega-3 fatty acids are especially important, deficiency can result in decreased vision and abnormal electroretinogram results.

Omega-3 Fatty acids are essential fatty acids, necessary from conception through pregnancy and infancy and, undoubtedly, throughout life.

The ratio of omega-6 to omega-3 fatty acids has increased in industrialized societies because of increased consumption of vegetable oils rich in omega-6 fatty acids, ie, linoleic acid, and reduced consumption of foods rich in omega-3 fatty acids.

Another important feature of omega-3 fatty acids is their role in the prevention and modulation of certain diseases that are common in Western civilization.

The following is a partial list of diseases that may be prevented or ameliorated with omega-3 fatty acids, in descending order of the strength of the available evidence as perceived by this reviewer:

Cardiovascular Benefits Of Omega-3 Fatty Acids

The strongest evidence of a relation between omega-3 fatty acids and disease is the inverse relation between the amount of omega-3 fatty acids in the diet and in blood and tissues and the occurrence of coronary heart disease and its many complications.

Effects of omega-3 fatty acids on coronary heart disease have been shown in hundreds of experiments in animals, humans, tissue culture studies, and clinical trials.

Omega-3 fatty acids from fish have been shown to be protective of heart disease and, by a variety of mechanisms, prevent deaths from coronary disease, particularly cardiac arrest.

The unique properties of these fatty acids in coronary heart disease first became apparent in the investigations of the health status of Greenland Eskimos who consumed diets very high in fat from seals, whales, and fish and yet had a low rate of coronary heart disease.

Further studies clarified this paradox. The fat the Eskimos consumed contained large quantities of the very-long-chain and highly polyunsaturated fatty acids of EPA and DHA, which are abundant in fish, shellfish, and sea mammals and are scarce or absent in land animals and plants. EPA and DHA are synthesized by phytoplankton, which are the plants of the waters and the base of the food chain for marine life.

Dietary omega-3 fatty acids act to prevent heart disease through a variety of actions. They:

  • Prevent arrhythmias (ventricular tachycardia and fibrillation),
  • Prostaglandin and leukotriene precursors,
  • Have anti-inflammatory properties,
  • Inhibit synthesis of cytokines and mitogens,
  • Stimulate endothelial-derived nitric oxide,
  • Antithrombotic,
  • Have hypolipidemic properties with effects on triglycerides and VLDLs, and
  • Inhibit atherosclerosis.

EPA and DHA have strong antiarrhythmic action on the heart. In experimental animals and tissue culture systems, EPA and DHA prevent the development of ventricular tachycardia and fibrillation.

Even total mortality has been improved in several studies in which the omega-3 fatty acid intake was increased. In one study, men who consumed salmon 1 time/wk had a 70% less likelihood of cardiac arrest.

In another study overall mortality was decreased by 29% in men with overt cardiovascular disease who consumed omega-3 fatty acids from fish or fish oil, probably because of the reduction in cardiac arrests.

The most recent data on fish consumption and risk of sudden cardiac death were from the Physician's Health Study in the United States in 20551 male physicians. Consumption of 1 fish meal/week was associated with a 52% lower risk of sudden cardiac death compared with consumption of <1 fish meal/month.

Total Death Rate Was Also Lower In Those Who Ate Fish.

Thrombosis, or the tendency to form blood clots, is a major complication of coronary atherosclerosis that can lead to heart attacks.

The omega-3 fatty acids from fish oil have powerful antithrombotic actions. EPA inhibits the synthesis of thromboxane A2 from arachidonic acid in platelets. This prostaglandin causes platelet aggregation and vasoconstriction.

As a result, fish oil ingestion by humans increases the bleeding time and decreases the stickiness of the platelets for aggregation to glass beads. In addition, the administration of fish oil enhances the production of prostacyclin, a prostaglandin that produces vasodilation and less sticky platelets.

Reduced Atherosclerosis

The EPA and DHA contained in fish oil fed to experimental animals actually inhibited development of atherosclerosis. There is evidence in both pigs and monkeys that dietary fish oil prevents atherosclerosis by actions other than reducing plasma cholesterol concentrations.

Atherosclerotic plaque formation may also be lessened by the reduction in growth factors after fish-oil consumption. Not only is platelet-derived growth factor diminished by fish oil consumption, but its messenger RNA is reduced. Because atherosclerosis begins with cellular proliferation in response to the influx of cholesterol-rich lipoproteins, the inhibition of this proliferation would greatly reduce the growth of the atherosclerotic plaque.

Reduced Cholesterol Levels

The pronounced effect of fish oil on high blood fats or elevated cholesterol levels is especially well documented and is supported by results of precise dietary studies in which the effects of a diet rich in salmon oil were compared with those of a vegetable oil and a diet high in saturated fat.

Fish oil in particular was shown to lower plasma cholesterol and triglyceride concentrations. Apolipoprotein B production is reduced by consumption of fish oil in comparison with vegetable oils such as safflower or olive oil.

Omega-3 Fatty Acids Essential Components Of Cell Membranes In Infancy

There are 2 critical periods for the acquisition of these essential omega-3 fatty acids: during fetal development and after birth until the biochemical development in the brain and retina is completed.

As already noted, the omega-3 fatty acid DHA is an important constituent of the cell membrane of these neural structures.

Omega-3 fatty acid deficiency is manifested in both the blood and in tissue biochemistry. Of note is a strikingly low concentration of DHA, which may fall to as much as one-fifth of the normal amount.

In addition, the body attempts to replace the deficient DHA with another highly polyunsaturated fatty acid of the omega-6 series. In rhesus monkeys, omega-3 fatty acid -- deficient diets fed to pregnant animals and then continued after birth induce profound functional changes such as reduced vision, abnormal electroretinograms, impaired visual evoked potential, more stereotypic behavior (e.g., pacing), and, perhaps, disturbances of cognition.

Some of these findings have been replicated in infants fed formulas deficient in omega-3 fatty acids. Most studies of premature infants have shown visual impairment and abnormal electroretinograms.

A recent study in full-term infants, in which a standard infant formula was compared with human milk and with formulas enriched with DHA, provided unequivocal evidence of considerable differences in visual evoked potential.

In all of the human studies, the biochemical evidence in plasma, red blood cells, and, occasionally, in tissues from autopsied infants has substantiated the omega-3 fatty acid deficiency state. The lower concentrations of DHA in plasma and erythrocytes are mirrored by lower concentrations in the brain and retina. Formula-fed infants have lower concentrations of brain DHA than do infants fed human milk. They also have lower intelligence quotients.

During pregnancy, both maternal stores and dietary intake of omega-3 fatty acids are of importance in insuring that the baby has adequate amounts of omega-3 fatty acids at the time of birth.

All the polyunsaturated fatty acids, including DHA, are transferred across the placenta into fetal blood. In addition, EPA and DHA in maternal adipose tissue can be mobilized as free fatty acids bound to albumin and be made available to the developing fetus via placenta transport.

Several studies in monkeys have indicated that when the maternal diet is deficient in omega-3 fatty acids, the infant at birth is likewise deficient as evidenced by low DHA concentrations in their plasma and red blood cells.

In humans, it was shown that the administration of fish oil or sardines to pregnant women led to higher DHA concentrations in both maternal plasma and red blood cells and in cord blood plasma and red blood cells at the time of birth.

Once membrane phospholipids have adequate concentrations of DHA, there is an avid retention of these fatty acids in the brain and the retina, even though the diet may subsequently be deficient. Several studies illustrate clearly the effects of omega-3 deficiency in both animals and humans.

American Journal of Clinical Nutrition, Vol. 71, No. 1, 171S-175S, January 2000

New Findings About Omega-3 Fatty Acids and Depression

By Alan C. Logan, ND, FRSH

Omega-3 fatty acids are polyunsaturated fatty acids that are considered essential because they cannot be synthesized by the human body. Dietary sources of omega-3 fatty acids include plants (particularly flax, canola, walnuts and hemp) and fish (particularly ocean fish such as sardines, anchovies, salmon and mackerel). Plants contain the parent omega-3, alpha-linolenic acid (ALA), which can be converted into eicosapentanoic acid (EPA) and docosahexanoic acid (DHA).1

Dietary fish and fish oil supplements are a direct source of EPA and DHA. The influence of ALA, EPA and DHA in human health has been the subject of intense research over the last three decades. Although best known for cardiovascular benefits, new findings indicate that the influence of omega-3 fatty acids in mental health, particularly EPA, may currently be underestimated. Epidemiological, experimental and new clinical studies have all shown a strong connection between omega-3 fatty acids, or a lack thereof, and major depression.

These exciting new findings are not entirely surprising when one considers that the brain itself is 60 percent fat and that one-third of all fatty acids are of the polyunsaturated variety.2,3 As discussed below, the current research highlights the critical role of these fatty acids in the central nervous system (CNS).

Omega-3 Intake Declines, Depression Rates Climb

There has been a significant drop-off in omega-3 fatty acid intake within Western countries over the last century. The opposite can be said of omega-6 intake. Although essential, omega-6-rich oils are found in abundance in the North American food supply. Currently these omega-6 oils (corn, safflower, sunflower, cottonseed, sesame) are outnumbering omega-3 fatty acids by a ratio of up to 20:1.4,5

This ratio is a long way off the close to 1:1 omega-6 to omega-3 ratio as recommended by the international panel of essential fatty acid experts in the Journal of the American College of Nutrition.6 The average daily intake of EPA/DHA combined is 130mg in North America, 520mg short of published recommendations and 870mg short of the 1000mg recommended by the American Heart Association in cases of heart disease.1

In direct contrast to the depletion of omega-3 fatty acids from the Western food supply, the rates of depression have dramatically increased in Western countries. In addition, depression is now occurring more commonly in younger persons. The average age of onset of depression has continued to dip over the last 100 years. Scientists investigating the change in rates of depression have made it clear that these findings cannot be explained away by changes in attitudes of health professionals or society, diagnostic criteria, reporting bias, institutional or other artifacts.7,8 Perhaps the inadequate omega-3 intake, the major deviations in fatty acids ratios and the quarter-century-old message that all fat is unhealthy has had an untold influence on rates of depression.

Fish Consumption and Depression

There have been a number of studies that have examined national and international fish consumption data and compared them to rates of depression. Dr. Joseph Hibbeln of the National Institutes of Health is a pioneer in this area. He, and his group, have shown that higher national consumption of fish for a nation equals lower rates of depression versus countries consuming the least amount of fish.9 He has also shown that higher fish consumption is correlated with lower risk of postpartum depression10 and seasonal affective disorder.11

Other researchers have shown that even within a nation, fish consumption is associated with lower risk of depression and higher mental health status.12,13 Finally, researches are now observing increasing rates of depression in regions of the world that are moving away from traditional omega-3-rich diets to typical Western foods.14

Laboratory Tests in Depression

The epidemiological studies clearly suggest that adequate omega-3 fatty acids may be an important protective factor in depression. Correlation, however, does not prove causation. To add to the strength of the epidemiological studies, scientists have examined the levels of omega-3 fatty acids in the blood cells and fat storage cells of those with major depression.

Four studies have shown that those with depression do indeed have lower levels of omega-3 fatty acids in the blood.15-18 One of the studies showed that the lower the level of EPA, the more severe the clinical depression.15 In addition, a recent study showed that the patients with depression have 35 percent less DHA in fat storage cells versus healthy controls.19

Experimental Studies

Over the last decade, neuroscientists have been examining the consequences of omega-3 deficiencies in the central nervous system. Alterations in serotonin and dopamine levels, as well as the functioning of these two important neurotransmitters is evident in an omega-3 deficiency. The changes observed in omega-3 deficiency in animals is strikingly similar to that found in autopsy studies of human depression.20

In addition to changing serotonin and dopamine levels and functioning, omega-3 deficiencies are known to compromise the blood-brain barrier, which normally protects the brain from unwanted matter gaining access.21 Omega-3 deficiency can also decrease normal blood flow to the brain,22,23 an interesting finding given the studies which show that patients with depression have compromised blood flow to a number of brain regions.24,25 Finally, omega-3 deficiency also causes a 35 percent reduction in brain phosphatidylserine (PS) levels.26 This is also of relevance when considering that PS has documented antidepressant activity in humans.27,28

Mechanisms of EPA/DHA Regulation of Mood

DHA is found in high levels in the cells of the central nervous system (neurons); here it acts as a form of scaffolding for structural support.29 When omega-3 intake is inadequate, the nerve cell becomes stiff as cholesterol and omega-6 fatty acids are substituted for omega-3.30 When a nerve cell becomes rigid, proper neurotransmission from cell to cell and within cells will be compromised.31

While DHA provides structure and helps to ensure normal neurotransmission, EPA may be more important in the signaling within nerve cells.32 Normalizing communications within nerve cells has been suggested to be an important factor in alleviating depressive symptoms.33 In addition, EPA can lower the levels of two important immune chemicals, tumour necrosis factor alpha (TNFa) and interleukin 1 beta (IL-1ß), as well as prostaglandin E2.34

All three of these chemicals are elevated in depression.35-38 In fact, higher levels of TNFa and IL-1ß are associated with severity of depression.39 Finally, EPA has been hypothesized to increase brain-derived neurotropic factor (BDNF), which is known to be lower in depressed patients.20 BDNF is neuroprotective, enhances neurotransmission, has antidepressant activity and supports normal brain structure. BDNF may prevent the death of nerve cells in depression.

Clinical Studies

There have been some published case reports indicating that flaxseed oil may be helpful in cases of bipolar depression and the anxiety disorder agoraphobia.40 The first controlled clinical trial indicating that omega-3 fatty acids may be of benefit in depression was published in 1999. In this case, 9:6 g of EPA/DHA versus placebo led to longer periods of remission and improvement in depressive symptoms in those with bipolar depression.41

Some researchers theorize that such high doses of EPA/DHA may not be necessary and that low levels of pure EPA may be of benefit.32 In a study published in the American Journal of Psychiatry, researchers showed that just 2g of pure EPA could improve the symptoms of treatment-resistant depression. The researchers found that the EPA (versus placebo), when added to an ineffective antidepressant for one month, significantly improved depressive symptoms.42

A larger study published in Archives of General Psychiatry replicated these findings, however, this time various doses of EPA were examined. Those on ineffective antidepressants were given 1g, 2g or 4g of pure EPA or a placebo in addition to the medication. Interestingly, the 1g daily dose of EPA led to the most significant improvements over the three-month study; it appeared that less was more. There were significant improvements in depressive symptoms, sleep, anxiety, lassitude, libido and thoughts of suicide.43

Researchers from Taiwan Medical University published a recent study in which they found that a 4.4g EPA and 2.2g DHA mix could alleviate depression versus placebo in those with treatment-resistant depression. This was a two-month study involving patients who were on antidepressants that were not working. As with the other omega-3 studies discussed, the fish oil was well tolerated and no adverse events were reported.44

There is also evidence that omega-3 oils may be of benefit in treating depressive symptoms outside of major depressive disorder. Canadian researchers showed that Antarctic krill oil (400mg EPA, 240mg DHA) could improve depressive symptoms associated with premenstrual syndrome.45 Harvard researchers have also shown that just 1g of pure EPA is beneficial in the treatment of borderline personality disorder. This personality disorder, which is particularly difficult to treat, is characterized by both depressive and aggressive symptoms. This was a two-month placebo-controlled study and the results showed that EPA has a mood-regulating effect, improving both depression and aggression versus placebo.46

To date, with one exception, all studies conducted on omega-3 fatty acids and mood have had a positive outcome. The singular negative study examined pure DHA in patients with depression. The results in the case showed that DHA alone was no better than placebo in alleviating depressive symptoms.47


Although an influence of EPA and DHA on brain physiology and structure is apparent, the precise mechanisms whereby omega-3 fatty acids may alleviate depression remain unknown. The results of the clinical trials reinforce the epidemiological and experimental studies, underscoring the importance of adequate omega-3 intake in those with depression.

The long-term studies of fish oil supplements in the area of cardiovascular health, some spanning three-plus years, have shown that they are safe and well tolerated.48,49 Patients with depression or depressive symptoms should discuss omega-3 fatty acids with their health care providers. While scientists continue to unravel the neuropsychological influences of omega-3 fatty acids, it should be recognized that they are not a substitute for appropriate mental health evaluation and care.

Alan C. Logan is a naturopathic physician licensed in Connecticut. Valedictorian of the Canadian College of Naturopathic Medicine, class of 2001, his recent medline-indexed article "Neurobehavioral Aspects of Omega-3 Fatty Acids: Possible Mechanisms and Therapeutic Value in Major Depression" is available to medical professionals by writing to Dr. Logan at aclnd@cfs-fm.org.


  1. Holub BJ. Clinical Nutrition: 4. Omega-3 fatty acids in cardiovascular care. CMAJ 2002; 166: 608-15.
  2. Bourre JM, Dumont O, Piciotti M, Clement M, et al. Essentiality of n-3 fatty acids for brain structure and function. World Rev Nutr Diet 1991; 66: 103-17.
  3. Yehyda S, Rabinovitz S, Mostofsky DI. Essential fatty acids are mediators of brain biochemistry and cognitive functions. J Neurosci Res 1999; 56: 565-70.
  4. Simopoulos AP. Evolutionary aspects of diet and essential fatty acids. World Rev Nutr Diet 2001; 88: 18-27.
  5. Simopoulos AP. Overview of the evolutionary aspects of n-3 fatty acids in the diet. World Rev Nutr Diet 1998; 83: 1-11.
  6. Simopoulos AP, Leaf A, Salem N. Workshop on the essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. J Am Coll Nutr 1999; 18: 487-9.
  7. Klerman GL. The current age of youthful melancholia. Evidence for increase in depression among adolescents and young adults. Br J Psychiatry 1998; 152: 4-14. Depression
  8. Klerman GL, Weissman MM. Increasing rates of depression. JAMA 1989; 261: 2229-35.
  9. Hibbeln JR. Fish consumption and major depression. Lancet 1998; 351: 1213.
  10. Hibbeln JR. Seafood consumption, the DHA content of mothers milk and prevalence rates of postpartum depression: a cross-national, ecological analysis. J Affect Disord 2002; 69: 15-29.
  11. Cott J, Hibbeln JR. Lack of seasonal mood change in Icelanders. Am J Psychiatry 2001;158:328.
  12. Tanskanen A, Hibbeln JR, Hintikka J, Haatainen K, Honkalampi K, Viinamaki H. Fish consumption, depression, and suicidality in a general population. Arch Gen Psychiatry 2001; 58: 512-513.
  13. Silvers KM, Scott KM. Fish consumption and self reported physical and mental health status. Public Health Nutr 2002; 5: 427-31.
  14. McGrath-Hanna NK, Greene DM, Tavernier RJ, Bult-Ito A. Diet and mental health status in the Arctic: is diet an important risk factor for mental health in circumpolar peoples? Int J Circumpolar Health 2003;62:228-41.
  15. Adams PB, Lawson S, Sanigorski A, Sinclair AJ. Arachidonic acid to eicosapentanoic acid ratio in blood correlates positively with clinical symptoms of depression. Lipids 1996; 31: S157-S161.
  16. Peet M, Murphy B, Shay J, Horrobin D. Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol Psychiatry 1998; 43: 315-19.
  17. Maes M, Christophe A, Delanghe J, Altamura C, Neels H, Meltzer HY. Lowered n-3 polyunsaturated fatty acids in the serum phospholipids and cholesterol esters of depressed patients. Psychiatry Res 1999; 85: 275-291.
  18. Tiemeier H, van Tuijl HR, Hofman A, et al. Plasma fatty acid composition and depression are associated in the elderly: the Rotterdam study. Am J Clin Nutr 2003;78:40-46.
  19. Mamalakis G, Tornaritis M, Kafatos A. Depression and adipose essential polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 2002; 67: 311-18.
  20. Logan AC. Neurobehavioral aspects of omega-3 fatty acids:possible mechanisms and therapeutic value in major depression. Altern Med Rev 2003;8:410-425.
  21. Ziylan ZY, Bernard GC, LeFamconnier JM, Durand GA, Bourre JM. Effect of dietary n-3 fatty acid deficiency on blood-to-brain transfer of sucrose, alpha-aminoisobutyrie acid and phenylalamine in the rat. Neurosci Lett 1992; 137: 9-13.
  22. Ito H, Kawashima R, Awata S, Ono S, et al. Hypoperfusion in the limbic system and prefrontal cortex in depression: SPECT with anatomic standardization technique. J Nucl Med 1996; 37: 410-4.
  23. Kimbrell TA, Ketter TA, George MS, Little JT, et al. Regional cerebral glucose utilization in patients with a range of severities in unipolar depression. Biol Psychiatry 2002; 51: 237-52.
  24. Ellis EF, Police RJ, Dodson LY, McKinney JS, Holt SA. Effect of dietary n-3 fatty acids on cerebral microcirculation. Am J Physiol 1992; 262: H1379-H1386.
  25. de Wilde MC, Farkas E, Gerritis M, Kiliaan AJ, Luiten PGM. The effect of n-3 polyunsaturated fatty acid-rich diets on cognitive and cerebrovascular parameters in chronic cerebral hypoperfusion. Bran Res 2002; 947: 166-73.
  26. Zimmer L, Vancassel S, Cantagrel S, Breton, et al. The dopamine mesocorticolimbic pathway is affected by deficiency in n-3 polyunsaturated fatty acids. Am J Clin Nutr 2002; 75: 662-7.
  27. Brambilla F, Maggioni M. Blood levels of cytokines in elderly patients with major depressive disorder. Acta Psychiatr Scand 1998; 97: 309-13.
  28. Maggioni M, Picotti GB, Bondiolotti GP, Panerai A, Cenacchi T, Nobile P, Brambilla F. Effects of phosphatidylserine therapy in geriatric patients with depressive disorders. Acta Psychiatr Scand 1990; 81: 265-70.
  29. Bourre JM, Bonneil M, Clement M, Dumont O, et al. Function of dietary polyunsaturated fatty acids in the nervous system. Prostaglandins Leukot Essent Fatty Acids 1993; 48: 5-15.
  30. Yehuda S, Rabinovitz S, Mostofsky DI. Modulation of learning and neuronal membrane composition in the rat by essential fatty acid preparation: time course analysis. Neurochem Res 1998; 23: 627-34.
  31. Heron DS, Shinitzky M, Hershkowitz M, Samuel D. Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes. Proc Natl Acad Sci 1980; 77: 7463-67.
  32. Horrobin DF. A new category of psychotropic drugs: neuroactive lipids as exemplified by ethyl eicosapentaenoate (E-E). Prog Drug Res 2002;59:171-99.
  33. Stoll AL, Locke CA, Marangell LB, Severus WE. Omega-3 fatty acids and bipolar disorder: a review. Prostaglandins Leukot Essent Fatty Acids 1999; 60: 329-37.
  34. James MJ, Cleland LG. Dietary n-3 fatty acids and therapy for rheumatoid arthritis. Semin Arthritis Rheum 1997;27:85-97.
  35. Lieb J, Karmali R, Horrobin D. Elevated levels of prostaglandin E2 and thromboxane B2 in depression. Prostaglandins Leukot Med 1983; 10: 361-7.
  36. Ohishi K, Ueno R, Nishino S, Sakai T, Hayaishi O. Increased level of salivary prostaglandins in patients with major depression. Biol Psychiatry 1988; 23: 326-34.
  37. Nishino S, Ueno R, Ohishi K, Sakai T, Hayaishi O. Salivary prostaglandin concentrations: possible state indicators for major depression. Am J Psychiatry 1989; 146: 365-8.
  38. Maes M, Smith RS. Fatty acids, cytokines, and major depression. Biol Psychiatry 1998;43:313-14.
  39. Shimizu E, Hashimoto K, Okamura N, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 2003;54:70-75.
  40. Rudin DO. The major psychoses and neuroses as omega-3 essential fatty acid deficiency syndrome: substrate pellagra. Biol Psychiatry 1981; 16: 837-850.
  41. Stoll AL, Severus E, Freeman MP, Rueter S, et al. Omega-3 fatty acids in bipolar disorder. A preliminary double-blind, placebo-controlled trial. Arch Gen Psychiatry 1999; 56: 407-12.
  42. Nemets B, Stahl Z, Belmaker RH. Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar depressive disorder. Am J Psychiatry 2002; 159: 477-9.
  43. Peet M, Horrobin DF. A dose-ranging study of the effects of ethyl-eicosapentaenoate in patients with ongoing depression despite adequate treatment with standard drugs. Arch Gen Psychiatry 2002; 59: 913-19.
  44. Su KP, Huang SY, Chiu CC, Shen WW. Omega-3 fatty acids in major depressive disorder. A preliminary double-blind, placebo controlled trial. Eur Neuropsychopharmacol 2003;13:267-71.
  45. Sampalis F, Bunea R, Pelland MF, et al. Evaluation of the effects of Neptune krill oil on the management of premenstrual syndrome and dysmenorrheal. Altern Med Rev 2003;8:171-79.
  46. Zanarini MC, Frankenburg FR. Omega-3 fatty acid treatment of women with borderline personality disorder: a double-blind, placebo-controlled pilot study. Am J Psychiatry 2003; 160: 167-69.
  47. Marangell LB, Martinez JM, Zboyan HA, et al. A double-blind, placebo-controled study of the omega-3 fatty acid docosahexaenoic acid in the treatment of major depression. Am J Psychiatry 2003;160:996-98.
  48. Marchioli R, Schweiger C, Tavazzi L, Valagussa F. Efficacy of n-3 polyunsaturated fatty acids after myocardial infarction: results of GISSI-prevenzione trial. Gruppo Italiano per lo studio della sopravvivenza nell’infarto miocardio. Lipids 2001; 36 Suppl: S119-26.
  49. Marchioli R, Barzi F, Bomba E, Chieffo C, et al. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time course analysis of the results of the Gruppo Italiano per lo studio della sopravvivenza nell’infarto myocardio (GISSI) -- prevenzione. Circulation 2002; 105: 1897-903.

Ask The Doctor

Related Site:


Treatments Programs:



Dr. Eddy's Clinic Integrated Medicine - Web Journal

Articles Articles give your more informations in detail. Forum - Forum Integrated Medicine - Ayurvedic Forum
Ayurvedic Articles give your more informations in detail. Disease Articles give your more informations in detail. Men Health Articles give your more informations in detail. Treatment Articles give your more informations in detail.
Aging Articles give your more informations in detail. Vaccination Articles give your more informations in detail. Women Health Articles give your more informations in detail. Integrated Medicine Articles give your more informations in detail.

Submit a Article Submit a Article - Articles give your more informations in detail.


Integrated Medicine

combines Western medicine with Complementary and Alternative medicine and mind-body-spirit approaches to health and healing.

Live Blood Analysis

Two drops of blood under a specialized high powered ultra-dark field microscope, reveals anomalies in the blood. The unique tool for prevention.

is recognized by most as the most powerful and versatile therapy known in alternative health because it plays a vital role in maintaining the well-being of the body. Check it out why.
Contact the Doctor

contact the doctor in the dreddyclinic.com

contact the doctor


This information is provided for general medical education purposes only and is not meant to substitute for the independent medical judgment of a physician relative to diagnostic and treatment options of a specific patient's medical condition.
In no event will The DrEddyClinic.com be liable for any decision made or action taken in reliance upon the information provided through this web site.




Chiang Mai 50230, Thailand
Phone. +66-53-436284
Fax. +66-53-436284
Mobile. 098505066
email contact
contact to the Integrated - Medical -Clinic | Terms and Conditions | Back Home Up Next
Last Modified : 03/15/08 04:15 AM